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LINEAR ALGEBRA

1. Linear Algebra : Matrices, Vectors,
" Determinants, Linear Systems of
Equations

Linear algebra—Includes the t.heory. and
applications of linear systems of equations, linear
transformations and eigen value problems.

Matrix—A rectangular arrays of numbers.
They are useful because they enable us to consider
an array of many numbers as a single object and
help us to perform calculations with these single

object in a very compact form. ‘A mathematical
‘Shorthand.’

@ Basic Concepts : Matrix Addition, Scalar
Multiplication
Matrix—A rectangular arrays of numbers (or

functions) enclosed in brackets. These numbers

(or functions) are called entries or elements of the
matrix.

a1 a-.-... Qin

Ay dppee.es. dyy
A=[aij]:’ j

Ap1 Apo...... ' H

In the double subscript notation a;, the first
subscript denotes the row and second subscript the
column, in which the given entry stands.

Order of matrix—(m x n) matrix : m-rows
and n-columns,

Square matrix—If m = n, then A is n x n
Square matrix,

Diagonal (main)/ principal diagonal—The

diagonal containing ay, an. ...... Ay
Rectangular matrix—A matrix which is not
square.
Vectors—Row vector : matrix having one
row (1 x n)
: Column vector : matrix having one column
mx1)
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Trnnsposition—lnterchanging row and
columns. If A is m X n matrix [“U]

Then transpose of A, ATis n X m matrix [a;]

Symmetric matrix—A square matrix :
AT=A
Skew-symmetric matrix—A square matrix :
AT=-A

(1

A = [a), square matrix.
A is symmetric iff a; = a; V i, j

A is skew-symmetric iff aj=-a;,Vi,j

A is skew-symmetric = a;; = 0. I;”"%““& Qlewady
(2)

is symmetric, the matrix A — AT is skew-
symmetric.

(3) Every square matrix can be written as a sum

of skew-symmetric and symmetric matrices.
Equality of matrix—Two matrices A = la;]

and B = [b,-j] are equal i.e., A =B,

if—

(1) They are of same order

(ii) The corresponding entries are equal,
a;=b; Vi, j

Matrix addition—The addition of two matri-
ces A=[a;]and B = [b;lis A + B,

if—

(1) They are of same order

(i)A+B=[qg;+ by}, i.e., adding correspond-
ing entries.

Scalar multiplication—The product of any
matrix A = [a;] by a scalar ¢ is cA = clayl = [cay),
i.e., multiplying each entry by c.

Zero matrix—A matrix with all entries zero.

h : e Zemg
For every square matrix A, the matrix A + AT
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Theorem

L orthe i A B, Cof amt 7K
CA+B = BeA AsBeC

0=
A+B)aC= As (B
et A —vdedhy

A0 =
A‘("A) =0 -~ Tavere.

2 Muliplying by sealar . &
qA+B) = cA+cB
(c+ KA = cA+kA

(A = olkA) = ckA
1A = A
3 (A+B)T= AT+BT
(cA)T = cAT.

® Matrix Multplication : (&hwrs  \2"*¢

(1) The product C = AB of two matrix A and B is
defined iff number of columns of A = number
of rows of B.

(2) fA=[ag]ismxp
B=[b;]isp x\h then, C = [¢;;] is (m x n)

P
Whﬂl'e. C,}- = Z a; bb
I=1

ged a0 n.

(3) i-row of A and j-column of B will produce Cjj
entry.

(4) Matrix multiplication is not commutative, AB
# BA in general.

(5) AB = 0 does not necessary implies A = () or
B=0orBA=0.

(6) AC = AD does not necessary implies C = D
(even when A #0).

(7) InC=AB
A is postmultiplied by B.
B is premultiplied by A.

Some Important Results

1. kKAB) = (kA)B = A(kB),

for some scalar k
2. A(BC) = (AB)C

3. (A+B)C = AC+BC

iy
" C(A+B)=CA+CB§“N

b
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triangular matrix— ,
that tli}u’\::ll entries below diag |
] ‘ >j "
Y Lower mangukr Mtr'!x.... A
that have all entries above diagong) e
0,i<) .

onal matrix—Square

on-]z)e.ll:)gcmnes only on diagona] m;ﬁh
:nd below diagonal are zero.

dlag (alh 92y A33peeeees am); (dy = 0' 1 f
—If all the entriee ..
alar matrix tries of
diagg;lcal matrix are equal (say) c. L™
diag (ay1, @22, 4335: - )
0i#j
where @;;= \ ¢ i=j
Identity matrix (Unit matrix
trix, whose entries of main diagonal are g M‘
Al=1A=A.
Transpose of a product—(AB)T = g1 s
Inner pl'l)dllct——lf a= [al ”_an] and ba
[by... b
n

ab=3 ab=a; b +ayby+....4q

n
=1
Product in terms of row and columy
vectors— .
A=la,...a,), where a; = [a;, ap,....., a

B =(b;...5,]", where by =[by, byy..... byt
C=AB = [Cij] C,}:a;- 5 bj'

Idempotent matrix - A2 - A

Nilpotent matriy *A™ =0 for some integerm.

2. Linear Systems of Equations

Linear system of m

owns x,, €quations in n un-

*+ Xy 18 the set of equations
ap x + ap, X +

...... + alﬂ xﬂ = b]
a2|11+azzx2+ ...... +a2x—b2
. g =
amlxl+amzx2+ ______ ‘a x.-b
mn 4p =
. Here %ij are calleq coeffic; 3
given numbers) Icients (which are
(1) IfaIle(,tl |

neous sysier, ™) € zero thep
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(2) If atleast one b; ( = 1, ...m) is not zero then
non-homogeneous.

(3) Solution—Set of numbers x) ... x,, which
satisfies all m-equations.

(4) Solution vector—Ordered Set of numbers
Y x,,] which satisfies all m-equations,
(5) If the above is homogeneous system, then it
has atleast one trival solution.
n=x =X =......=.I,,=0

Matrix representation—Ax = b
Aryeeeen. Aip
where, A = |: :
Bi oo Pah a0
x = [x..x]Tand b= [b...b,)T
Augmented matrix—
y | Apgevones gy b]
A =

Q) - Ay bm
= [a,—_',-, b,]

The Augumented matrix A determines the
system completely because it contains all given
numbers given in linear system of equations.

3. Rank of Matrix : Linear Indepen-
dence and Dependence

Letay, g.,...... , a,, are m-vectors, then

Linear combination of m-vectors: ¢,a, + ¢,

m
.t +CulGn= 3 Ca
i=1
where, c;...... c,, are any scalars.

m
Linearly independent vectors— If ¥ ¢,a, =
=1
0, when all ¢/'s are zero. then (a, ......, a,,) are
linearly independent vectors.
m —
Linearly dependent vectors— If S ¢4, = 0,
i=1
for some ¢,'s may be zero, then (a,......,
linearly dependent vectors.

Sub-matrix—A matrix obtained from a
Matrix, by omitting rows and columns.

a,,) are

Scanner by Droid-Veda

Mathematics | 119U

Rank of a matrix—The maximum number
of linearly independent row vectors of a matrix A
= lau] is called the rank of A or (rank A).

Nullity of a matrix : If A is a square matrix
of order n then nullity of matrix A,

N(A) = n—rank A.

Some Important Theorems

I. The rank of a matrix A equals the maximum

number of linearly independent columns
vectors of A.

2. Matrix A and its transpose AT have same
rank.

3. Row-equivalent matrix have the same rank.
4. p-vectors ay, ay,......, a, are linearly indepen-
dent if the matrix with row vectors (a;, @,

...... , @, ) has rank p. The vectors are linearly
dependent if that rank is less than p. :

5. Rank (AT BT) = Rank (BA)

6. Rank of the product of two matrices cannot
exceed the rank of either factor.

4. Solutions of Linear Systems

Given a linear system (non-homogeneous
system) of m-equations in n-unknowns x,....... Xys

ti]],\']+a|212+ ......... +a|,,x,,=b1

anxi+dpxy+.........

Gy Xy 4 Ay Xa 4o + Oy X, =D

(A) Existence of solution—This system has
solution iff the coefficient matrix A and augmen-

ted matrix A of it have same rank.

Bleevsne al!‘l
A=|: ,and
_am] ...... am
ayy...ay, b,
A =
LAy ooy - bm
ie. Rank A = Rank A .

(B) Uniqueness of solution—This system
has precisely one solution iff

Rank A = Rank A Ir=n
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be obtained by determining r-suitable | ay ax
_M_hmam:’m n-r unknowns, 1o ay Gy 9

which arbitrary values can be assigned. 4 i
(D) Homogeneous system—If all b/s (i = “a
1...m) are zero. Otherwise non-homogeneous. For Triangular Matrix—
(a) A homogencous system has the trival Al = laj=ay 0y, 4,
m.‘l al...... ‘l.‘o‘ifﬁnkAlﬂ. l,-t"mofdiagma] entries.
®) A system has the non-trival
A ey g Some Properties of Determinang,

(¢) A homogeneous linear system with fewer Let A be a determinant of order |

equations then unknowns always has non-trival | det AT=det A
solutions. 2. IABI = Al IBI
(D") Non-Homogeneous system—If a non- 3. det Al = 1/det A
homogeneous linear system have a solution, then L Bitei
all the solutions are of the form x = X, + xa, 5. det (xA) = x" det A
where x; is any fixed solution and x, areall 6. det A= ...... A, = product of eigey
the solutions obtained from homogeneous linear 7. If all elements of a row (or column) e g,
systems. plied by constant k, then de[m,.*..,
5.D . multiplied by k. s
' . 8. Exchange of two rows (or columm,d*
The n-order determinant of a square matrix the sign of the determinant.
A = lag] of order n, is a number, 9. Determinant does not change if ope o (g
det. A = |Al=lg column) multiplied by a constant js addeq 4
= ayc;+ P another row (or column)
= L T e n 'n .
e ;z ; A 10. Determinant equals to zero, if
N A +aycy (a) All elements of a row(column;mmc
bl G (b) Two rows (columns) coincide.
where, ¢, = (-] M, Rank of a mat;ix in terms of determi.
= Co-factor of a, in |Al :a:t_An - >;n matrix A = [a;] has rank r2 i
! as r X r sub-matrix wi : .
and, mj = Determinant of order (n - 1), If A i i “,uh 110n-2ero determinant
obtained by deleting the rows > : 1S square matrix of order n, its rank is s
and columns of entry a;, . tﬂ"
(i.e. j-th row and k-th column) Cramer's Theorem (Solution of linea

: system by determinants)
= minor of a;, in |Al,

(@) If a linear system of n-equati
Geometrically, ystem of n-equations has the

Same number of unknowns X

X250 c0eney Xge
det A = 1 volume pf the n-dimensiong auxi+apx, 4., +a),x,=b

parallelopiped spanned by the P n Xn
column (or row) vectors of A, IMT@nt...... +ayx,=b

Forn =2
ap aul Qn1 Xy + a5 x4 4
I.g arl = Anan-apa, e i + Gy %, = by
21 40 m)‘i-— E
X =
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has @ non-zero coefficient determinant D = det A,
the system has precisely one solution. This solu-
ion is given by the formulas

Dy

D,
n=p R=p> .....t.rﬁ’(Cnmet‘a Rule)

where D, is the determinant obtained from D

Skew-s
matrix is skew-symmetric, if—

Orthogon
orthogonal,

Mathematics | 121U
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matrix—A real square

AT . - A‘ f.t. a”--o aj‘

o al matrix—A real square matrix is
|

by replacing in D the k-th column by the column AT = A-l
with entries by ... b,.. So
If the system is homogeneous and D # 0, then me Important Theorems

it has only the trival solution x; =0, x; = 0,
=0.
&
1f D = 0, the homogeneous system also have
non-trival solutions.

1.

6. Inverse of Matrix 2.

If A is a square matrix, then inverse of A, A-!
existif AAT=ATA=L

Alexiste>det A=0 3
& A is non-singular matrix

& Columns (rows) of A are linearly indepen-
dent.

Calculation of A-!

1 .
< AT y =
(a A = r [A;]", where A;; is the co
factor of a;; in det A

Conjugate is

Matrix A is symmetric =
(a) All eigen values are real

(b) Eigen vectors corresponding to different
eigen values are orthogonal.

Matrix A is skew-symmetric

= Eigen values are pure, imaginary or zero.
=> Main diagonal entries are zero.

. Matrix A is orthogonal =

Eigen values are real or complex conjugates
in pairs and have absolute value 1.

Hermitian, Skew-Hermitian, unitary—
If A= [ay] is a complex matrix, its Complex
A = (a

Hermitian matrix—A square matrix A =

(b) By Gauss Jordan method o
=T o
@jj... ¢, 100...0 A = A Le.,ay=aj
(Al] = : 5 . Skew-her.'linitian—A square matrix A = [ay
: : is skew-Hermitian,
Ao S e | ok g
A = -Ae.,a, =-a
100... by, bl,,] Vel (nl
. : Unitary—A square matrix A is unitary, if-
- -1
A = Al
......... 1 a,... b, J
= [IB] Some Important Results
-
then B = A 1. Matrix A is Hermitian = main diagonal ent-
(C) If A= dlag (d]l ....... “nn)

then A-! =

: 1 L
diag (ﬂu Rkt ;}"‘m)
7. Symmetric, Skew-Symmetric and
Orthogonal Matrix

Symmetric matrix—A real square matrix is
Symmetric, if—

AT = A, i.e. Ay = ﬂﬂ(
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[

ries are real.

Matrix A is skew-Hermitian = main diagonal
entries are pure imaginary or zero.

3. Eigen values for—

(a) Hermitian and symmetric matrix are real.
(b) Skew-Hermitian and skew-symmetric
pure imaginary or zero.

(c) Unitary and orthogonal matrix have abso-
lute value.
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nn%-&'%' oy = _’(Cnmer'ukule)

where Dy is the determinant obtained from D
py replacing in D the k-<th column by the column
mm o s b,.

If the system is homogeneousanthO then
it has only the trival solution X, =0, Xy =

=0.
| 3

If D = 0, the homogeneous system also haye
mn_m\ra] solutions.

6. Inverse of Matrix

IfAisa squam matrix, then inverse of A, A-1
c;lﬁllfM 1=ATA=1L

Alexiste> det A#0
& A is non-singular matrix

& Columns (rows) of A are linearly indepen-
dent.

Calculation of A~

(@ Al = [A;]", where A is the co-

bt |
det A

factor of a;; in det A
(b) By Gauss Jordan method

ay... ap, 100...0

(Al] = § -
ay Aup  reresvres 1
100... biy... b
......... 1 a,. bm,
= [IB]
then B = Al
c)If A = diag (ap....... Apn)
1
then A-! = diag('l-- Baaminion )
ap Qnn

7. Symmetric, Skew-Symmetric and
Orthogonal Matrix

Symmetric matrix—A real square matrix is
SYmmetric, if—
AT = A ie ay=a;
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matrix is skew-symmetric, if— :

AT = <A e ayy=—ay

Orthogonal matrix—A real square matrix
Oﬂhogonnl if—— .

= Al
Some Important Theorems

I. Matrix A is symmetric =5
(a) All eigen values are real
(b) Eigen vectors corresponding to different
eigen values are orthogonal.

2. Matrix A is skew-symmetric
= Eigen values are pure, imaginary or zero.
=> Main diagonal entries are zero.

3. Matrix A is orthogonal =
Eigen values are real or complex conjugates
in pairs and have absolute value 1.
Hermitian, Skew-Hermitian, unitary—
If A =[ay] is a complex matrix, its Complex

Conjugate is A = [ay

Hermitian matrix—A square matrix A =
[ag] is hermitian, if—
;\T e AR an = aj
Skew-hermitian—A square matrix A = [ay)]
is skew-Hermitian,
F e A ie.,ay =—a;
Unitary—A square matrix A is unitary, if-

AT = Al

Some Important Results

1. Matrix A is Hermitian = main diagonal ent-
ries are real.

Matrix A is skew-Hermitian = main diagonal
entries are pure imaginary or Zero.

2

3. Eigen values for—
(a) Hermitian and symmetric matrix are real.
(b) Skew-Hermitian and skew-symmetric <<
pure imaginary or Zero.
(c) Unitary and orthogonal matrix have abso-
lute value.
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scalar A are unknown.
(@) Zero vector X = 0, is solution for all A.

() When x #0, The value of A for which
mm*(orm)oﬂ\mdcor-

of A, corresponding to A.
The characteristic equation—
A is an eigen value of A > det (A - AI)

det A = A, ... A, (product of all eigen values)
trace A = A, ... + A, (sum of all eigen values).

9. Quadratic Forms

Given A = [a;], a square matrix of order n
and x =(xy, ......, x,), then the quadratic form
Jor A is

Qx)=x TAx .

Qx)=x TAx is

(a) Positive definite, if Q(x ) > 0,x #0
< all eigen values >0 < IAl> 0.

(b) Positive semi-definite, if Q(x ) > () < all
eigen values A > ().

(c) Indefinite, if Q assumes positive and nega-
tive values <> A has positive and negative eigen
values,

(d) Negative definite < Q ¢ ) < 0x #0 e

all eigen values 2 > () ¢ _ QW ) are positive
definite.

10. Basis of Eigen Vectors

Linear independence of eigen vectors—| et
By Ai be k-distinct eigen-values of square
matrix of order n, thep corresponding eigen

e
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uAnﬁdhﬂ'ﬂ“"“““’“’"f'::
given a equationAx = AT, where vector ¥

Ar AT = De2 (A=) ¥ = 0 has the solution is

- = istic vector
z 01 led Characteristic
MI 0is cal

M)t ), Xphi€ R}

vectors ... %y form a "‘!

trix has n-distinct eigen v
II'II“ of cigen vectors for € (o
b:;dmmmofwmplel(Mduﬂ)
' Diagonalization of .

matrix A has a bms_ of ej
D1 A X is diagonal, with the eiges
E:s the entries on the main diagony)
the matrix with these eigen vectops »

vectors.
11. Linear Spaces

ces—A set L of g] ~

i Ce Or V. Y3

... are called linear spac “vector %&i
if ‘addition and multiplication by gy

defined so that the following laws are :
all x,y.zeLandA pe B, fled

L}

b i
e

L @x,yeL=x+yelL
@x+y =y +x [Decion lg)
(i) (X +y )+2 =X +( +Z_)(ﬁ-vodd'q)

iv)30 : x +0 =x (4 ;,r,;w;;‘_\! it ods
WM3I-x :x +(=x)=0 (- ol
I. () Ax €L

(i) Ay ) = (Ap) x
(i) A+ x =Ax +
(I(VAMx+y )=k +A

IEI'

Yy
(V) Ix =x
(vi)Ox =0
(ViDL 0= A

Test for subspace—A non-empty subset M
of L is a linear space itself, if—

L.x,yeM S X+yeM
2xeMAieR=MreM
Linear combinations, basis—

. The vector y is a linear combinatltl‘f

vectors

for some scalars ?[. oy
2. The linear hy]] LH (,

7123
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3. VeClOrs Xy «..... Xn aFe

(a) Linearly independent, if AMXy + Aay +..
A Xy =0=Ai=0,alli

(b)l..inearlydepmdent.iﬁll, ...... A, not all
ol

i ?-1;| R Ao X =0
A (¢» some X; is a linear combination of the
' other)

4. ¢ .E....E. is a basis of the linear space L
and L is n-dimensional, if—

(i) €1s++---» €n are linearly independent.

12. Scalar Product
1. Let L be a linear space, A scalar product

&,y ) is a function L X L— R with the

following properties holding for allx ,y , z €L
and A, p € R—

@G.y )=0.x)
B) Ay +M2)=Mx .,y )+ p(x,2)

©@&,x )20,x,x )=0¢x =0

2. Lengthof x :1x 1=N(&x,x ),

lex | = (o)lx | (c scalar)

3G ,y)l<ixl
inequality).

4.[x +y ISk | +1y |(Triangle inequality).

Iy | (Cauchy-Schwarz

13. Orthonormal Basis

Let L be an n-dimensional linear space with
scalar product (Euclidean space)

1. A basis ey,..., e, is called orthonormal

o - = ) i=]
Ml @) = By= Y0 g
2. e,,...e, are orthonormal basis,

n
x = 3 xeandy

n r—
= E Vi€
k=] k=1
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the E o ot Nty 01000
n X x“.q ’QSU.UUU' ; ‘
K12 = 3 a2 S
k=1 f:'a N
- n v
X.y = Elxkyt_ :/ ,'.:-/.
4
14. Orthogonal Component

M subspace of L:M*={y eL:(x,y )=
0,allx € M)

Orthogonal projection—M subspace, €},...€,
orthonormal basis of M

x1 is the orthogonal projection of x on M, if—

- Ty = - " 4 K
x =x'+x",x' e M,x"e€ M.

15. The Space "

The set of all column vectorsx = (X ... X,)¥
is called P27, The natural choice of orthonormal
basis of 2" is the set of vectorse, = (1, 0, 0,...)7,

e2=(0,1,0,5....00 .. e,=(0,0,..0 Dlie.

X =Xy + X8+ eunnn +X,€, , X, any scalar.
Additionx +y = (x; ... )T+ ... y)T =
(X + Y1, X2+ Y2sererees X, + Yol

Multiplication by a scalar cx = c(xy, Xz,...

x,)7 = (cxy, €xg,...¢ X%,)T
Scalar product X .y =X y; + X3 Y2 +...... +
Xy Yp=x Ty .

Length or Norm x | =VxTx =Vx;2 +.....x,2
x| =lelx | o Squant
Pythagoras theorem
x.y=0eok+y P=lxP +1yP
Cauchy's Schwarz' inequality

1.y ISIxi+1y |

The triangle inequality ix +y 1< k1+1y |
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PART-B
LINEAR ALGEBRA (1)

1. Let A be the matrix of order m x n, then the 8. If A is a square matrix, then A-! exist iff—

5 3
- The eigen values of the matrix| 1 5 1 |is—
311
(B) 2,6,7
(D) None of these

(A) +2,3,6
€ -2,3,6
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determinant of A exist iff— (A) IAl=0 \(ﬁ) IAl#0
(A) m>n (B) m<n (C) 1AI>0 (D) 1Al <0
&y e (9}’:1: - 9. The matrix A = [a;] is Hermitian iff— <
~ 1f matrix A and B commute, then— A) a,3-=—5j,»forall ij A» _‘.3 4 FQ .
A) (AB)"=A"B" (B) (AB)" = AB L il FIAW
(C) (AB)"=B" (D) None of these Vo it e ¢, \ew I 9
; » . i (C) a;=aj foralli,j i P ¥
3 If1is an identity matrix, then— (D) None of these B
"= B) I"=0 ; -
JA T : 10. The diagonal elements of Hermitian matrix
o =11 (D) None of these -
_ If A and B are two matrix of same order, then (A) Complex number
the follow operation does not holds. BB Siahesi
j;,} :1; B;AB A (C) Natural numbers
5 E
(D) None of these
(C) A-B=-B+A )
D) (A+B)I=A+B 11. The _diagonal elements of Skew-Hermitian
_ o matrix are—
- A real quadratic form XT A X is positive (A) Pure real numbers or zero
definite, if— i s
(Ay/All eigen values of A >0 ‘é} % 3 l'lmgm‘")t; y &t
(B) All eigen values of A <0 (D) Nomp ? lnum I
(C) All eigen values of A =0 (1), 190008 those
(D) None of these 12. The matrix [2 6] is a—
. A real quadratic form X' A X is positive p F .
semidefinite, if— fA) Hermitian matrix
JA) All eigen values of A >0 (B) Skew-Hermitian matrix
(B) All eigen values of A <0 (C) Symmetric matrix
(C) All eigen values of A =0 (D) Skew-Symmetric matrix
(D) None of th '
e 13. The matrix [? 6] 1S a—

(A) Hermitian matrix

v(g; Skew-Hermitian
(C) Skew-Symmetric
(D) Symmetric
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15. lAhtmmh.MA’-A.MA
B
(A) Hermitian matrix
matrix
(C) Symmetric matrix
(D) None of these

16. If A and B are idempotent matrix, then AB is
idempotent, if—
NA) AB =BA (B) (AB)T = BTAT

(C) AB =BA (D) None of these
17. If A is Skew-Hermitian matrix, then iA is—
“AA) Hermitian (B) Skew-Hermitian
(C) Symmetric (D) Skew-Symmetric
18. If A and B are idempoter! matrix, then A + B
will be idempotent, iff—
(A) AB = BA = zero matrix
(B) AB = zero matrix
(C) BA = zero matrix
(D) None of these
19. The square matrix A is nilpotent if—
(A) A™ =1, m any positive inte . S
\JB) Am=0 o b A Y
(C) A=A
(D) None of these
20. The square matrix A is involutary matrix if—
JA) AZ=1 (B) A2=0
(C) A=A (D) None of these
21. A square matrix A is ogonal if—
(A) AAT#] (;Z;AAT ATA=1
(C) AAT=0 (D) None of these

22. The square real matrix A is called unitary
if—

(A) AAT=ATA =] (B) AAT#]
(C) ATA=0 (D) None of these
23. The diag (1, 1,
NA) Idempotent matrix
(B) Rectangular matrix

(C) Non-Symmetric matrix
(D) None of these
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© ) = A”
26.
is— . g
1-i 2 1+i 95>
w [ e ﬁ‘}'h *
[2 l-l'] 1+i "
© Lisi i 2 98
27. The Tranjugate of a matrix _l; f li‘ 3 "
1—i 140 97 ’
(A) [ ]-H (B) I . 1-i
15
© [1-: Wil @ L5 o
28. If in a matrix A, two columns gre ; mll
changed and we obtain matrjx B, then—
(A) Al =IBI @?AI""‘BI

] _

= (D) None of these l‘

29. If AT is a transpose of square matmm
then—

(C) 1Al =

(A) ATI= 1Al (B) IATI=IAl |
(C) IAT = |Al (D) None of these
30. If two rows of a matrix A are identic

thepn—
1Al =0 (B) 1Al =1
(C) 1Al#0 (D) None of these
31. If A is any n-order square matrix and kisa|
scalar, then— '
(A MAI=k"IAI  (B) KAl =KA
(C) IkAl = k2IAl (D) None of these
1
32. Expansion of the matrix |-z P )
y X l 2
(A)l+x+}'+:{ .Ml+1¢+]"
(©) 1+ xyz (D) None of


https://play.google.com/store/apps/details?id=mobile.scanner.pdf

W R . gl '
o A iR B sl (B
. (D) None of these

w' is obtained from the matrix A
». - two rows, then— .

(A) BI=Al (@B = - 1Al
© Bl=ixi (D) None of these
35 [f B is the matrix obtained from A, by chang-
" ing rows into columns and columns into row,
then-—
W 1A = Bl (B) IAl # IBI
© 1Al =- B (D) None of these
1%, If row vectors of a square matrix A are
* linearly dependent, then—
(AVAAI =0 (B) 1AI %0
(€) AI=C (D) None of these
37. If A is a square matrix, then—
M.dj A) A = |Al'L, where I an identity
matrix
(B) (adj A) A=Al
(©) (adjA)A=1
(D) None of these
38. IfIAl #0, then—

(AYfadj Al = IAP-!  (B) ladj Al = IAl"

(C) ladj Al=0 (D) None of these
39. A square matrix A is singular if—

KT TAI=0 (B) IAI#0

(C) IAl=1 (D) None of these

40. If A, B, C are three matrix, then—
(& |ABCI = 1Al IBI IC
(B) IABCI=IABIC
(C) IABCI =1Al IBCI
(D) None of these
41. If row vectors of a non-zero square matrix A
are linearly independent, then—
(A) IAI=0 BT 1Al 0
©) IAl=n (D) None of these

42.If A and B are two square matrix of same

order—
W IABI=IBAI  (B) IABI#IBI IAl
(C) IABI # [BAI (D) None of these
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45.

47.

48.

49.

50.

-1 8

(A) adj Ais a Non-Symmetric matrix
W) adj A is a Symmetric matrix ar
(C) adj A is does not exist

(D) None of these :
Let I, be an Identity matrix of order 7, then—
W0 adil, =1,  (B) adjl, =0

(©) adjl,=nl, (D) None of these

L

. Every Skew-Symmetric matrix of odd order

is—

Singular (B) Non-singular
(C) Identity (D) None of these
If matrix A have inverse B and C, then—
(A) B#C
( =C
(C) B=nC, foranyn
(D) None of these

The square matrix A have an inverse iff—
&5 1Al # 0 (B) 1AI=0
(©) 1AI> 1 (D) 1AI<1

If A and B are two non-singular matrix of
same order, then—

(#) (AB)! =B A1
(B) (AB)! = Arl B!
(C) (AB)'=AB
(D) None of these

. 1 1 | {€4)
The following vectors ( 4 0,- 4).(3 3 0)

a:i/(ﬂ. ; 5= ; ) are—
(X) Linearly independent

(B) Linearly dependent
(C) Constant

(D) None of these

The following vectors (1,9, 9, 8), (2, 0,0, 8)
and (2,0, 0, 3) are—

( inearly dependent
@)’ Linearly independent

11/23
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53

55.

56.

57.

58.

52. The following vectors (- 4, 2), (9, 1) and

(5, 3) are—

(A% Linearly dependent
(B) Linearly independent
(C) Constant

(D) None of these

The following vectors (0, 5, ~1), (-3, 8, 16)
and (9, 56, -64) are—

(A¥Lincarly independent

(B) Linearly dependent

(C) Constant

(D) None of these

Let m = rank of matrix A and n = number of
linearly independent columns vector of
matrix A, then—

(A) m<n (B) m>n

(CVm<n (D) None of these

If two vectors @, and a, are linearly depen-
dent, then—

(A)-/aLl = ca, , for some ¢
(B) a; #ca, , for some ¢

(C) a; > ca, , for some ¢
(D) None of these

If any of the vector from m-vectors a, , a, ,...

...a, , can be expressed as linear combina-
tion of the rest (m—1) vectors, then m-vectors
are_

(A) Linearly independent

(B) Linearly dependent

(C) Constant

(D) None of these

The unit vector are—
(A) Linearly dependent

(B) Linearly independent

(C) Zero vectors

(D) None of these

Let A and B are two equivalent matrix,
then—

(A) Rank A =rank B

(B) Rank A # rank B

(C) Rank A > rank B

(D) None of these
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50, Let A be a matrix of

61.

62.

63.

65.
66.

67.

matrix d.&‘

(A) Rank (RA) #rank (A)
(B) Rank (RA) 2 rank (A)
(€) Rank (RA) < rank (A)
(D) Rank (RA) = rank (A)

Ax = b, then the n}
?yz:; exists, if— *olution
(A) Rank (A) # rank [A, b)
(C) Rank (A)= rank [A; b]
(D) None of these

i Ax =b, where o '
ll:‘:\:egljlﬁgue solution, if— rder of A jg "
(A) Rank A #rank [A; b] =pn
(B) Rank A =rank [A; b] #n
(C) Rank A =rank [A; b] = n
(D) None of these

If Ais a(n X 1)non-zero matrix andg,
(1x n) non-zero matrix, then— |

(A) Rank (AB) =1 (B) Rank (AB)=,
(C) Rank (AB) =0 (D) None of thege

i =i 0
(A) 1 (B) 2
€ 3 (D) 4

0 i 4
The rank of the matrix A={~i 0 j |js_

1278
The rank of the matrixA:[c‘l 5 6]1&_
2 L

(A) 1 (B) 2

€ 3 (D) 4

The rank of matrix, whose every element is
unity, is—

(A) Greater than one (B) Equals to one
(C) Zero (D) None of these
Let A be a square matrix of order , then
nullity of A js—

(A) n-rank A (B) Rank A-n

(C) n+rank A (D) None of these

I 1is an unit matri of order n, then—
(A) Rank (1) = ,, (B) Rank (I)2n
(C) Rank (1)<, (D) None of these
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1. Numbers i
234 g
Even numbers—Divisible by 2

2468...
Old numbers—Not divisible by 2,
L&A
Prime numbers—Number greater than one
and whose only divisors are one and number
itself, 2.3, 5,711, 13....
Composite numbers—3, 6, 8, 9,10, 12....
The integers in this chapter are denoted by a.
bednmet.
2. Fundamental Theorems of Arithmetic
Principle of induction—If ¥ is a set of
integers such that
fayle X
(bine Z=n+1e X then

1) All integers 2 | belongs o I

Well ordering A is a non-
empty set of positive integers, then A contains
smallest member.

Divisibility—dln (d divides n) = n = cd, for
some c.

Common divisor—If dla and dlb then d is
commen divisor of @ and b.

Greatest common divisor—If dla and dlb
and for every ela and elb = eld then d is greatest
common divisor of a and b, denoted by (a, b) =d.

Relative prime—a and b are relative prime

if lfa, &) = 1.
Prime number—An integer n is prime if 11
and if the only positive divisors of n are | and n.
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Composite number—If 5 5 |
'-_muismmposu: number. " g o

1. Divisibility has the following pr,. .
ey .
For integers n, mt, d. a and b o
@nn m
(b)dfln and nim =5 dilm ||'-fﬂ|1
(g)alin and dim = dlian + b, iilr_;u,n:n
Oineg B
(multiplicatiog o
(eance g

(d) din = adlan
{e) adlan and a # 0 = din
(one divides every |

() lin
ig) nl0) fevery integer d Vides
h)0in=>n=0 (zero divides o, I“"U]

(i) din and n20) = 1dl < Inl (€Omprisy

(j) ln and nld =\l = inl
(k) dln and & 2 0 = (nldiln
2. Given any two integers a and b, the 2

common divisor g of @ and b of the fam
d = ax + by, where v oand vy are integes,

Moreover every commaon divisor of o and

divides this d.
3. Given integer a and b, there is one and anly

one number o such that
(a)dz0
(b) dla and >
(c) ela and elb = eldd
4. The ged has the following properties

(a) (a, b)=(b a)
(b) (a, (b, c)) = (ta, ). c)
(c) (ae, be)=lclia b)
(@ (@ l)=(l.a=1

(@0 =(0a)=lal

-

|

|

|
|

. pair of integers Xo.

"w.—-lfalbrmd if (g, B) = 1

5 jpen : ,.:Ihszlu;:pfime number
of prime numbers.
6 g product
at There are infinitely many prime
1. Po*
does not divides a than (p, a) = |

prime

[ il rmnbrbmphmplb.
o 1 p divides a product a a; .., then

0 IWM ane of the factors,
e mental theorem of arithmetic—
i ansﬂ-n > 1 can be represented s
¢ WI of prime factors in only one way,
from the order of the factors,

thm—Given integers a and b

algori
nl“"o_ there eXisis 3 unique pair of inie.
drsuchthita=bg+r0srop

an N
g 0T bla, here g is quotient and

7 remainder:
4 Linear piophantine Equations
incar equation ax + by =c. with a # 0,
:‘::e::mgat is called a linear Diophantine
A in two unknown x and y.
tion of linear Diophantine equation—
Sol yy is called a solution of ar +

»-;cifﬂn* byg =t
L Leta 20, b 20 and ¢ be any three integers
¢ and o = o b). The linear Diophantine
pquation at + by = ¢ has a solution iff de.
2 If Xg. Yo Is a0y particular solution of ax + by
= ¢ then any other solution of this equation is
b a S
d=x- LY =W+ gt being any integer.

3. The Diophantine cquation Vealt k has no
solution if k has the form k = (4 — 17 — dm?,
where m and n are integers such that no prime
p=-1 (mod 4) divides m.

4. Congruences

a=b (mod m)—Given integers a, b, m with
m >0, a is congruent to b modulo m, [a= b (mod
L if m divides the difference a - b. The number
wis called modulus of the congrucnce.

1. a =0 (mod m) iff mla

L«

Mathematics | 3551
- amp
n"" fﬂmn.-:umu-w-ormm}.
F‘«l!lwculnequinmrulim

= 0% ¢ (mod m) (transitivity),

415
n:&["‘ﬂm}wa,ﬂ{w“’m

() ax 4 g b
Etrixlyn:y_” By (mad m) for allinte-

L] 20 = b} (mod m),
) o=
:T- B (maod m) for every positive inieger
id) ﬂu!;ﬁb]{modau
181 ]rw .
Swith integer wcfﬁm'ﬂ:s\.wr —
5. If o > 0 then
u!b{rmdn]iffsrubcrﬂwdm)-
X (‘uned.mnlnv—uauk{m;n}lnd
d=im, ¢ then a.b(nm';—').
7 :Lisum @= b (mod m). If dim and dla then

=

1f a = b (mod m) then (g, m) = (b, m).
9, llafbmmdm}andifosw—algmlbw
a =g,

o

- @ = b (mod m)iff @ and b give the same
remainder when divided by m
a=bimodm)and a= b (mod n) where (m,
nl=1,a=b{mod mn).
Rasidue class a modulo m—

= {xlx=aimod m)}.

Complete residue system modulo m—A set
of m representmives, one from each of the residue

W
classes I, 2, ..., m .

Some Important Theorems

1. For some given modulus m,

{a) &=b iffa=bimod m)

(b} Two integers x and y are in some residue

class iff x = y (mod m)

.
(c) The m residue classes 1, 2, ...
disjoint and their union is the set of all

INEEETS.

e ——— T

e are
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2. Assume (k m)m 1 I @).csta) 8 8
n-h.q-—-hhlllll(hv-

complete
oo bt}

solution.

2. Assume (a m) = d.'l\lltlliﬂﬁ
wu-b[ﬂﬂﬂhwi
dlb.

the lincar
J.Am{'.u]-dddll-;l:l: 7]

" congruence ax= b (mod m
- - nﬁ-m:h-.'lhnnwb!

m 2m 1, where tis
L:o‘_.n‘.....n[d I]d.

" the solution, unique modulo mid, of the linear
e allmd®
congruence & I‘( 2)
4. If (a b) = there exist integers x and y such
that ax + by =d.
6. Reduced Residue System
Reduced residue system modulo m—It is 8
set of ¢(m) integers, incongruent modulo m, each
of which is relatively prime o m.
Here @(m) is Euler's totient.
Some Important Theorems
1. If {a,. @, ... Ggym)} is @ reduced residue
system modulo m and if (k m)=1, then
{kay, kas...., Ry} is also a reduced residue
system modulo m.
2. Euler-Fermat theorem—Assume (a, m) = 1,
then ™ = | (mod m).
3. If a prime p does not divide a then
o' = [ (modp).
4. Little Fermat theorem—For any integer a
and any prime p we have o® = a (mod p).
5. If (a, m) = | the solution {unique mod m) of
the linear ax = b (mod m) is given
by r=b a®= - (mod m),

Lagrange’s Theorem
1. Lagrange's theorem—Given a prime p, let
Jx) =6y # €)X #onn + Cp X
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be a polynomial of degree |,
cocificients such that ¢, o (mog
congruence,
has at most 1 solutions,
2 MAR =G+ 1 X+ b oy
of degree m with integer mgrm?::)h*
the Sl = 0 (mod ) "y gy
than n solutions, Where p is prig, ", " Moy,
coefficient of £ is divisible by p, " they
3. For any prime p all the coefficieny, .

gl — 1= ix—p 4 gy _

‘e divisible by p. * 0 -

4. Wilson's theorem—For any prime p, |

= (-1) (mod p). -

Bt holme's
pas,mhave

Pt -t

-

k=1

+l
By

E" HH)‘
Primg

= 0 (mod p2)

7. Chinese Remainder Theorem
1. Chinese Remainder theorem—Aasuny
Mgaeiny My ATE positive integers, rrli'nuh
jprime in pairs ; (my, mgb=1ifiz & "
Let by, By, b, be arhitrary integers, The,
the system of congruences
x=by (mod )

x=5, (mod m,)
has exactly one solution modulo the peodue

T
2. Assume my,..., m, are relatively prime i
pairs. Let by,..., b, be arbitrary integers and
let ay,..., a, satisfy {a. m} =1 fork=l

2.....r. Then the lincar system of congruences
ax = by (mod mg)

ax = b (modm,)
has exactly one solution modulo my my...

3. Let f be a polynomial with integer coeffi
cients, let my, m,.... m, be positive iniegers
relatively prime in pairs and let m =M L.
...m,. Then the congruence )
fix) =0 (mod m) |

\g

:nﬂl- i mtnins arbitranly large
is, given any integer & = 0,

';-ﬂ* :‘:mu point (a, b} such that
e :', Jattice: poInTs. 6
._'ﬂ‘n-:rs kD<s<k
@+ from the origin.
e Residues
5 residue mod p—If congruence
) has a solution then m is & quadratic
}rd:':":,maﬂ by (mRp). B
’1"" (mod p) has no solution, then n is :
. ponresidue mod p denoted by (aRp).

endre bol—Lct p be an odd prime.

m,.,a:)gen; Legendre's symbol, (nlp)is
L +1 ifnRp

(nlp) = [_| i rlip

i n = 0(mod p)then (nlp) =0
Jacobi qubob—-lf Pisa J'J(I'-Ili\'c ol integer

‘#wnﬁtm P=.].-I| . Then Jacob
'ﬁp‘n for all integer is
niP) = 1 tnlp .

W}isiqmdm symbol and (all) = 1.

fomt Important Theorems

. lipis an odd prime. Then every reduced resi-
fue system mod p contains exactly (p 112
quadratic residues and exactly (p - 1)/2 qui-
dratic nonresidues mod p. The quadratic
msidues belong to the residue classes con-
taining the numbers,

N () ¥
L Euler's eriterion—If p is an odd prime. Then
Torall n we: have (nlp) = n'#~1¥2 (mod p).
11-4_&6!!': symbol (nlp) is a completely
icative function of n.

Mathematics |
ﬂr.rchoflhewwwnns. 4 For every odd prg )

I’ﬁn).;-l.l---_- r =i} gy ‘P“"'ﬂ'.
B e e )i ) o~

4 i utions of (i i) =11 ifpmy

b ﬂ"!‘;ﬂ,{.]:wm.mu;!...wn]. 5. Féren _{—l. ifp:;i;::],

ints in the plane visible "'{';:‘” prime p,
) = (-1jet-nm

= 1, !l’p:zllmod&l
. =1, if p= 23 (mod B)
o e 10 ol )
b live resid
the following (p - | y2 mmw’u;::nﬂ cnd

I . denotes the numbe
which exceed pf2 then () ol

Emi f
“::‘ is the number defined in Gauss lemma,
Pl -
- - L
E_] [p].m 1 g (mod2)

17 n is odd then
ip-1u2
muy ["'] (mod 2).
r=1 4
B Quadratic reciprocity law—1i p and g are
distinct odd primes, then
(plg) (gip) = (—1)l-tre-iv
9, 1f P and €) are odd positive inegers, then
(a) (rmlP) (miP) = (malP)
(b} (nlP} (mi}) = (PO
() imiP) = (nlP) whenever m = n (mod P)
(d) (a? alP) = (1) whenever (a, Py= 1.
10, 1f P is an odd positive integer, then
(11} = (=1 }F-1¥% and (2P) = (1}" 1%,
| Reciprocity law for Jacobi symbols—If P
and Q are positive odd integers with (P, Q)=
1, then (PIQ) (QIP) = (=1F-IHe1¥,

9, (Gauss Sum

¥ = E (] {:N"."

Gin, ) rmdpx

where yir) = (rp) is the quadratic character mod
P
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Some Important Theorem* then
L ";.‘pﬂ ﬂ-(’:'“
Gl xR = and
2 r_p-::z—"l e p. Then ¢
quadratic reciprocity 1w .
m-(—ll’“’"‘w
is oquivalent 10 congruence
G, = ) o O

and i3 ¥
3. 1f p and g are distinct odd prmes
u:u—:ur-ndp‘-

i iy
Gil. xr! l@l'_z."---,..g'“ -

LR R "-q(d.'l
4. 1f the product ma is even, then

Sia. m) = ﬂ’ﬁ']m

m=1
where S(a, m) = Y, £%= and bar
rell

complex conjugate.

u.lmd-dlﬂqﬂ"’m i
‘ as

Sum of two squares—

.Nomugerofm:lotmddvjhlhﬂllﬂr
WO SgUAres.

If cach m and n are sum of two squares, then

there product mn is also a sum of tWo

squares.

3. Thue's lemma—Let p be a prime and @ an
integer. which is coprime to p. Then the
linear congruence ax = y (mod p) has the
soluﬁm(m_\fnlm‘hﬂutﬂ‘lxgl«\r; and
{rql_\'ni<\|r;.

4 Fu—l'sh—-—hoﬁdpmeplmh
represented as a sum of two squares iff p= |
{mod 4).

5. A positive integer i > | can be represented as
sum of two squares iff either n has no pnme
factor congruent 1o 3 (mod 4) or if it has a
prime factor congruent to 3(mod 4) then it

occurs o an even power in the prime facton-
zation of n.

"
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o Every odd prime is the gy,

in ane and only opg . o
£

Wiy, ‘\
L wﬂfl}nl’wmq.mm‘h

‘.;a“gnmorm“uh‘\
2 Up is a prime number,

mﬂ.&rlﬂmmnfwhich‘:h‘

adebecte {](MP
lemma—If cach l'

s mlndnisasumn[f h‘
then their product ma i al., an;:‘\
SqUAres. af.

4, Any prime AUMBET P can be we
four PON-NEEANYE squares, ™
Lagranges theorem—Fycry

5 be represented as the su?n"::!reulh
negative squares. DUt gy,

. Aubry theorem—There are jpf;,,;

. primes cach of which is 4 h::ﬂ:"lq
distinet squares. ey

function—A 1oy

valued function defined on the pnai:i\'?. gl

called an arithmetical function e,

Mibius function—The My, Tuinctigg, '
]

e

iy =1

I 1 owiite m=p o ihey
pin) = (=1 Il'rn. == g

pim) = 0, otherwise,

1. m,:u iff m has a square factor = |,

2 1fn 2 1, we have

Y T e
Z—T..md] - [!r] a {". ins]

Euler totient function—I7n = |, the fye
totient din), is the number of positive integers py
exceeding n which ure relative prime o n;
I. linz1, EI. Gl =n.

adin
7. Relation beiween & and i 2
Gin) = Eﬁ.""“:

3. Product formula for 9(n) :

Fornz LQ-(nI:n:‘:‘ (I -;’)

IblF""”’ and oz |,
”:{l} [“d]] where d = (m, n).
ol ‘t,)nfi'\“- m=1.

of arithmetical func-
are 1WO arithlln_eticul functions
]gﬂ £ product {Dirichlet convoly-

function
aith™ o
e E."‘”"("*)'
- ) = (F* £) ().
P L is commutative and associa-
F"‘:ﬂ arithmetic functions, f, g, k,
et feg = & of
"";-ts'” = (fre)vk

tion—An arithmetic function
w 1 {I n=1
In}= [,,] =10 =1
ﬂ’w_,m arithmetic function win)
(hesl ™ rse—If [ is an arithmetic
) ﬁ‘"";'f,“. 0 then there i5 a umgue
o0 1. called Dinchlet inverse of
"‘.‘r.rd = f'-]:l
u-w'*"f' is given by recursion formula,
1
e =
flim = ;_;:_: dsz(:)f'un form 1.
1
l.].ﬁg{d']@ginl = .)r:}eﬁdm(d)

Magoldt function,
{Ing p. if n=p" for some
Alm= prime p and some m=1
0, otherwise

Llfnz1,logn= ‘Z‘ Add)

Mangoldt function—For cvery integer i > 1,

Mathematics | 259y

2, Wnzi, o ;
n) = ..)r."'""’ !n‘(:)

Completely gy

multiplicaiive function :::l':;:Il“ Tunetion—A

fimm) = fim) fin
. . ) for all m,
I fis multiplicative then 1) = | .
q Gi\.-enfwilhj[ =1, Then :
Ga) [ is multiplicatiy,
Spy fip oy

e

e iff Rpyv.per) =

for all Primes j and

) fis multiplicative, | i
PP - th 2
multiplicative ff RJ’:J" i I;i:uulz“?flst:{l
Primes p and all ntegers g > |,
n‘_; and g are m
Dirichlet j « I3

all integers a, > 1.

e

ultiplicative, so is their

=

I bath g and f are multiplicative,

el then fis «
multiplicative, s wlay

[

CWgis multiplicative, so (i i
ity 80015 ¢ (its Dirichlet

I f is muliplicative, then f

18 | is completel
multiplicanive iff SRS

Flimy = pin) finy forallnz 1
- I fis multiplicative, then

iy = 0= fipn

=

Liun_ville'» Tunction—The Liouville's fun-
ton Ali=1andifn=par . pot

)= (e say

Foreverynz 1,

- _ LV s sguare
,%'.MJI - {li. olherwise

b

A = i) ) for all .

The taw (1) and sigma () function—For
each positive integer n. the tau function i) is the
nuimber of positive divisors of i and sigma funec-
tion ofn) is sum of positive divisors of #, i.e..

tn) = L1 andainy= Ld
alin dw

dzl izl
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Theorems al ae G (Existene, 1 %,
h“ m#‘ (d) For every a € G_thc"“_h‘ ‘
LI n o= gy ps P N P |
'i..:'.";‘.._ geat saiva=e. Existency o, §0,
Foreachr2 1. Abelian grOUR—A group ¢ | * My
® htﬁh*m&.ﬁd Wﬂwliﬁuevﬂy abe Giq, Aa%
S =l 16 G is @ non-empiy setang , | by
L . defined on G, then (G, « ; . 0 b
(i) @m) = Al p-1 1 Jis—
"l @Q.d-poup—n.be(}:,u_bg
- e
(b) Semi-group—a. be G,
(L] lal-'(h““h"l---‘ﬂ"'; fasbrc=asibscla b o G_s y
oin) = aipy 1101 ). O () Monoid—a. b€ G = ape )
2. Let m be an inicger > 1. then (asbhysc=awibsc)ab, €€ Gag
(@ s in ol mis RS exist e € G identiy -« e=cras,
() oln) is 0dd iff n is perfect square FA—— P —
IHH iy, ".
- ] Manoid is & semi-group with ig
lﬂﬂ‘ ¢ Gmupir.aauannidwilhmven:mnr-
) I‘!i'g;:.‘l Abelian group is a group with L T—
i

Greatest integer function—Let x be a real
number then [x], the greatest integer function
denotes the larges! integer that does not exceed X.
Some Important Theorems
L [x)=x=x+ 1L
L |x+ m] = [x] +m, m any integer.
Lfsl+Ex+ylsld+D+1
0, if x is an integer
-1, otherwise

8 ['i’]- [;] if m is a positive integer.

6. If p is a prime number and n a positive integer.
Then the exponent « such that

" :sa.]mw:f El.
g J':I[’i]
11. Group
A non empty set of elements, G is said 1o

form a group if in G there is defined a binary
operator = called product such that

(@labeG=2as be G (Closed)
(hla.bceG=as (bsc)=lasb)sc.
(Associative)

4. [x]+[=s)=

Scanner by Droid-Veda

Order of group—The number of ¢, %
G.0lG). ey

Cyelic group—a' & G and 000G -

= a ==y,
a=1 4 i<n
a" i=n

- Lemma—ia) The identity elemen oG
unigue,
b) % ae Gits inverse a ' is unigue,
[c}n:G::tn"r'1=rr
(abeG=lasbr' =h'syl
(Rlasb=arc=h=r
brascra=shb=v

12, Subgroup
A non emipty subset H of G. 1 a subgroupof
group G, if H is a group on the operator of G,
Right and left cosets—H s a subgroup o
group G, a € G then
Right coset of H in G is Ha = {ha: he H}
Left coset of Hin G is aH = {ah - ke H}
Index of subgroup—If H is u ubgroup of &

the index of H in G is the number of distinet righ
cosets of Hin G.

11 G is a group,
(period of a), is the least
bt O e ol =

HK = {x€ G:x =hk;
ﬁ:;bpwpof&
(4] empty subset H of a group
of Giff,
=ab€ H

le H
gl“p;i’amm finite subset of
then H is a subgroup of G.
]

yae G
’ Ha = {xe G:a=xmod H},
is ong-lo-one COfrespon-
(e o two right COSELS of Hin G.
Theorems
"Gi" ﬁm;mpn:gd) H is a subgroup of
l- ..n(li] ;
ﬂuﬂblmwp andae G= o(:?.fuiG}_
B fitegroupand a € G = a9 =¢.
s:‘u:_n'_p is a prime number and a is any
L o mamodp.
e M‘ up whose order is a prime
Gisa finite group .
w—“p,mﬁlsacychc group.
is a subgroup of G iff HK = KH.
“:m“ﬂ subgroups of the Abelian group G.
T'“]ﬂi;awbsmupof(‘-.
jiH 2nd K are finite subgroups of G of orders
L,a.n..do[Gj respectively then
o(H) oK)
oK)= i K
¢ I and K are subgroups ol_(_; a_nd
qB]a-*JdG}:mi-nK;» W a{G) , then
HAK# (e}

[.Normal Subgroups and Quotient
Groups

Normal subgroup—A subgroup N of G s
wonal subgroup if Vg e Gandme N, gngte N.

Quotient group—If G is a group, N is
wmal subgroup of G, then group GIN is called
wtent {factor) group.

N is a normal subgroup of G iff
firl=Nforvge G.

Mathematics 1+ g3y

Lemma—y |

=aN,¥ae g O "omal subgroup of G iff Ng
Lemma—y; |

(Na) (Nb) = Ngp, "™l subgroup of G iff

Lemma—y
finite group then " SBg10Up of G, G is
ofGIN) =
14, Hmﬂl’phhm
Hmmwm_A )
mappm &M
G into a groyp G O

15 521 1o be a ho i
VabeGowb=papp T

. Kernel— 4 ;s , homomorphism of G into
G, the kernel of ¢, K, is defined by Ki={xeG:

€ an identity element in G ).

l.tumrphhm—-.v\ homomorphism ¢ from G
nte Gis ap isomorphism if # i% ONé-to-one

lmumhk—l'us\ groups G and Ge are iso-
morphic 1f there is an i
(G =Gy,

!..emm_n—."«' 5 a normal subgroup of G :
¢ GGG =N, Tre G Then ¢ is homo-
morphism of G onto G/N_

oG ol N),

W)= e,

somerphism of G onto G*,

_ Lemma—ii ¢ is homomorphism of G into
G, then

(a)@le) = e, the identity element of G.

B =o' Vie G

Lemma—If ¢ s homomerphism of G into G
with Kernel K, then K is a normal subgroup of G

Lemma—If ¢ is a homomorphism of G into
G with kernel K. then the set of all inverse images
of ;_: € G under @ 1s given by K, where ¥ is any
parucular inverse image of G

Lemma—A hemomorphism & of G into G
with kernel K, is isomorphism of G into éiﬁK.
=ie).
Some Important Theorems

1.1f & is a homomorphism of G onto G with
kernel K, then G/K= G.
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2 m-—----:‘g

) and p any prime such
mefmo:eha_ﬂﬂ
of order p®,
If G is Abelian of order o(G) and
PG o o). then there s umigue -
2roup of G of arder p=. b
. 1f & is homomorphism of G intoG with kemel
K. and N is anormal subgroup of G.N=
{re Gigix)= ﬁ},
Then G/N = GIN and GIN = (GIK) (NIK)-

15, Automorphism

mﬁunni'uelf.
Theorems
1. IF G is a group, A(G). & set of automorphism
15 also a group.
- mﬂuampwﬁmﬁﬂ-ﬂﬁ‘m“‘
G

We O wla) > 0, then o(@(a)) = ola).

16. Cayley's Theorem

1. Caylery—Every group is isomorphic to a
subgroup of A(S) for some appropriaic S.

2. If H is a subgroup of G, § is a set of all right
cosets of H in G. then there is 8 homomor-
phism o of G into A(S) and the kernel of o is
the largest normal subgroup of G, which is
contained in H.

3. If G is a finite group, H # G is a subgroup of
G : #(G) li(H)! then H must contain nor-
trivial normal subgroups of G.

17. Permutation Groups

Even permutation—A permutation 8 € S, is
said to be an even permutation if it can be repre-
sented as a product of an even number of trans-
positions.

Lemma—Every permutation is the product of

its cycles.

-

hism of &
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R
Pi‘io“\

Lemma—EVery permutatg,, iy
wm},

Lemma—S, has as o Normg) " L]
index 2, the altemating group 5 cong; Sroy,
even - ”"I'=
18. Conjugate and N“'"“‘“ler

v fa,be G b i, .
ifhereexist €€ Gib=c1,, “"'UU“‘

Normalizer—a € G, Nia) 1, *
'hggm)-{.\'e('j:xa-_—ml_ §

Lemma—Conjugacy is an equy,,
tion on G. ) qh.*

Lemma—N(a) is a subgroy, of G
Some Important Theorems

1. IfGisa finite group =°""G“"‘N[n])
2. ae ZG). mecenu-toragm..p iffN(,

16 G is finite, a € Zirfn(N:q.}.__MG}]'U.
3. Ife(G)=p", pisa prime numbe,

= ZG) 2 (e).

4. WolG)=p*. p is a prime

Abelian.

5. Canchy—If p is prime numbeg,
then G has an element of order p_r 4 petgy

Number S

19. Sylow's Theorem
1. Ifpis a prime number and poly(G),
a subgroup of order p®. Mﬁh
2. 1 ple(G), p™* Jol G, then G is 4 sub
order p™. o
3. If A and B are finite subgroups of G they
_ olA)ail)
oA 1B)= oA B o)
20. Direct Product
Internal direct product—I7 G is a growpand
N;. N;.....N, arc n¢ sl subgroupof G
@G=Ny,Ny...... N,
by ge G, g=m; mym,m € Niing
unigue way, then G is internal direct productof ¥,
N...N,.
1. I G is iniemnal dircet product of Ny Ny, the
fori#j. N, AN, = (e) and if a € Nobely
then ab = ba.

direct product of Ny,
I XNy X.covc: X N then G ang

Group

‘G_.-]:I‘G is an Abelian Broup of
me .

BT A ¥ Avis cyclic of o

A me ...ty Are invarianis of G.

" 3 The number of non-isomorphic

__#’;‘:d order p" are equals (o (he
"Mnﬁ.
Ring

set R is said 10 be a ring if in R,

!‘ﬁ WD OPETalors + and - respec-

o pceR

ek Abelian
W pabea group with identity
me u”,m-[b“"} 0 on addition.
Hf-’;_‘*u.ﬂ‘ Yae R
'u'l:gl-[-ﬂ)’u
i (Closed under)

(Associative under +)
(Left distribution)
(Right distribu-
tion}

eR
ﬂ::» csalb el

pesa<c+b

Lo ol

clath=*
“m“ny-—l eR:a-l1=l-a=n

R
o tative ring—1{ a b= ba Vo be R

mdﬁkﬂ‘-—:ﬁ is commutative ring, @ # 0
¢ R is 2210 divisor if there exist be R, b=0:ab

=0 . .
domain : A commulalive ring is an

Hﬂﬂmﬂinil it has no rero divisor,

Division ring (Skew ficld)—A ring is called
o division ring if its non-zcro clements form a

guap under multiplication.

Characteristic zero—An integral domamn D
wof characteristic zero if ma=0.a20e D
# m =1

Finite characteristic— An integral doman D
wof fimite characteristic if there exist a posilive
igerm ma=0,%ac D.

Nall (zero) ring—( (0], =, <) : 0 + 0 = 0 and
Hag,

iMMoring Ry 11 A mappi
MOmOrphism | '8 © from ring R

(@) &a 4 L_.‘_m‘.:::lf"u, be R_ﬁ..
‘h"mqu‘fu!ﬂb}

. —If o
.R&':Enlluhnm .;}: m%hum of R into
3 Jzﬂ_ﬁgmeml‘-‘;!nl_hwdmae R

Sm—g ) = 0 for al] ge R
RUif it s als ope. A an of R intn
. 13

A and B yre N
Phism rom one.onto apotiar”
Some Important Thegens

1 1 9 is homg
morphism of
i) 60a) < of Rino R, then

(i) i) = PalLVae R

and g) =R,

1so
there is 3 if

2 H:;.I ::En:mmm-phwm of R into R’ with kernel
{a)lidhisa subgroup of R under addition
t:rrFIF; € li9)and r e R then both ar & R and

3 The homomorphism ¢ of R into R is an iso-
morphism iff 1) =0,

4. 1f integral domain is of finite characteristic

then its characteristic is a prime numiber,

24. Ideals and Quotient Rings

Ideal—A non-empty subset U of R is Ideal if

(a) U is a subgroup under addition

b WueUandre Rourruell

Quotient ring—If U is an ideal of ring R.
then R/U is a quotient ning and is homomorphic
image of R.

Maximal ideal—An ideal M = R in a ring B
is maximal ideal of R if whenever U is an ideal of
R:McUcRtheneither R=UorM=1.

Some Important Theorems
1. If R is a commutative ning with unit element
and M is an ideal of R then M 15 maximum

idieal of R iff R/M is a field.

17 /23
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Principal ideal—An
unit element is & principal
deal A € :hd‘hh .
SOMC @ € B l.& ‘ -l
if there exist b€ R :ab=1.

mdf R is a commuiative ving with wsit

clement.
n-_—h“-ﬂl‘“

me element of R if whes-

unil ® is sad 10 be prime n
cverg=ab.a be lﬂu‘o'bia‘i

M'h—h the Euchidean ring R,
&, b e R are relatively prime if their greatest com-
‘mon divisor is a unit of R

Some Important Theorems

1. If R is an Euclidean ring and A an ideal of R.

Then there exist an clement d € R : A con-

sists exactly of all agr as range over R

A Euclidean ring possesscs 4 unit element,

If R is an cuclidean ring. Then any two ele-

ments a, b € R have a greatest common

divisor d. Moreover d = ha + jub for some .

pe R p

4 If R isan integral domain with unit element
and suppose for a, be R alb and bla are true.
Then a = ub, where u is  unit in R

5, HRbuﬁxﬁMlﬁtﬂﬂ,bslkbto
is not a unit in R, then dia) <d(ah).

6. If R is un Eoclidean ring. Then every element

m R is either & unit in R of can be writlen as

the product of a finite number of prime ele-

ments of R.

If R is an Euclidean ring. Suppose for a, b, ¢

€ R, albc but (a, b) = 1. Then alc.

il o

3

a element in the .
where a, be g .ﬂ
one of aor b. "

”ﬂ'hmwimﬁm‘r
11, Every non-7ero element in an Fy,);
.-hnﬂquﬂywﬁumu.]'h‘
elements or is a unitin R "0 g
|3‘1'luimll-|\=I;:nl|"risama:unm;_dml 3
Euclidean ring R iff g is 4 prime ¢,

R
6. Polynomial Ring
If Fis a field. The ring of polyngm
indeterminate, x. FLX] 15 set of polynomiep
=g @ K+ A bt a, ., where
negative integer and a.......a, € F. »

lquiydrmlﬂf—lfphhugoal"“

4 vuaret Oy X and
ﬂ.l)-bg4-b|x+61:3+ ...... +'b-'-""3l!inm}
then plx) =glx) iff ¥ i 20,a,= b,

Addition of polypomial—If pix) = g 4 o
S @t ay x and

w}-h+b,x+5311+ ...... +b,,.l‘.\re|n]14

then p(x) + glx) =cp+ c) X+ or
where c;=a; + b,

Multiplication of polynomial—If p(r) s
ay xt a7 and

g,;]-b,+b.x+b2;-’+ oot by " arein Hy

then pix) glx) =cp+ o) x4, Lt et

where ¢, = a; by + a, by + b+ 4 @by
Degree of pix}—If pla) =y +a 544

a, " #0and a, # 0 the degree of prix) is deg pla)
=m.

Irreducible polynomial—A polynomial p

€ Flx] is irreducible if whenever plak= atx) bl

“ﬂddﬂﬂfﬂxﬂm

Theorems

are pon-2e1o elements of Flx|,

3 “"’-M”]"M‘u’
m(ﬂx}g(—'ll

jean fing-
ideal ring.

l. plx), glx) € Flz], we
w0 divisor dix) which
- as dl2) = Aix) flxh + pix) gix)

.. in Flx] can be written as uni-
of i ible polynomials in

in Flx] is a maximal ideal
"’(ﬂg over F.

8, e if the greatest common
l'-“-n'n;we I £
ﬁi~ a0y ayis I
o The content of polynomial pi) =

w where a's are integer, is.

s + a3, X"

gt ® commen divisor of integers ay . a;,

[

o ial is i
Integer monic—A polynomial is integer

d‘.n {he coefficients are integers and the

s coeic

”.pmnt'l‘heurems

|, lifixyand gix) are primitive pul)l,-nomia]s, then
fix)gtn)is & primitive polynomials.

3 Ganss' Lemma—If the primitive polynomial
fix) can be factored as the product of two

jals having rational coefficients, it
can be factored as the product of two
palynomials having integer coefficients.

3l an integer monic polynomial factors as the
poduct of two non-constant polynomials
having rational coefficients then it factors as
fhe product of two integer monic polynomi-
ils.

A Einstein criterion—If gix) = a, + a1 +
ot @, is a polynomial with integer coeffi-

is L.

Mathematics | 265U
Clents. Suppose
that .
f.ﬂ:tn.mth ‘“'m"-‘ number
s irreducible ayer ghe ' Then gis)

28. Polynomial
lative Rh’

Flay.....i.) : The field of rational functions

mx,..... £, over F.

Unique domain—An integral
domain, R, with unit elemens js ' I-F'M factori-
zation domain if—

(3) Any non-zero element in R s either 2 uni
nr_tmheuﬁumaslhcpmﬁnm Y m‘-
of irreducible elements of R it

(b) The decomposition in part (a) is unique

uptn the order sociates . -
elements, - of the irreducible

m‘l'mc-..

Some Important Theorems
1. ITR is an integral domain, then so is R{x).

1

2. If R is an integral domain, then so is R[x,,...
o Xg)

If R is  unique factorization domain and if &,
b e R, then a and b have the greatest common
divisor (a, b) & R. Moreover, if a. b are rela-
::el)« prime (a. &) = |, whenever albe then

[

=

Ifa & R is an irreducible element and albe,

then alb or aic,

. If R is 2 unigue factorization domain, then the
product of two primitive polynomuials in Rlx]
15 again a primitive polynomial in R[x}

6. If R is a unique factorization domain and if

fix), gix) € Rlx] then cifg) = () clg)

If fix) € Rlx] is both primitive and imreducible

as an element of R{x]. then it is imeducible as

an element of Flx). Conversely, if the primi-
tive element fix) € Rlx] is irreducible as an
element of Flx], it is also imeducible as an

element of R[],

If R is a unique factorization domain and if

playisa pnimitive polynomial in R[x], then it

can be factored in a unique way as the pro-

duct of irreducible elements in R{x].

9 If R is a unique factorization domain, then so

is R[x].

wn

~

e
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10, 1R is » wnique factorization domain the ¥
i Ryt

10, U i o ek then Lot 18 8 089

factoni zation domain. f
29. Fields

Ficld () is & non-empty set, F is  feld.

() (F. +) is an Abelian group.

) (F) i semi-Abelian, fe, (R=(01) 10
Abelian group.

(enmuuu-uﬂlﬂ

aib+c)mabsac

(b4 c)ambas o
msmmn--w

of Fif F c K ¢ F is a subfield of K-

Degree of The degree of exten-
sion K over F, [K: F] is the dimiension of K as 8
wvector space of F. .

Algebraic over F—K is an extension of F,
ae lhdﬁrﬂcml’.ﬂﬂﬂlnﬂm

Eevouris Uiy & F. not all zero, such that g @ +
...... +a, =0

Sub-field obtained ato F=I1

K is an extension of F, a € K, then Fla), is the

smallest subfield containing both F and a.

Algebraic of degree n—The element @ € Fis
algebraic oqumnwFifiﬂlﬂiﬁellnw-
mplymiﬂmFddepeenMw.lnl-
mﬂyuuni-ldmupu,

extension—The extension K of F

iswunw;smmdhfmch-
ment in K is algebraic over F.

Algebraic number—A complex number is
algebraic number if it is algebraic over the field of
rational number.

Some Important Theorems
1.1 L is a finite extension of K and if K is a

finite extension of F, then L is a finite exten-
sionof Fand [L: F] = L : K] [K:F].

2. If L is a finite extension of F and K is a sub-
field of L which contains F, then [K:FI[L:F].

3. The element a € K is algebraic over F iff Fla)
is a finite extension of F.

Scanner by Droid-Veda

prmrersesee e v oy

o Kiv I
4 w-%‘ -Wn. Of degrog ), g Wi (K, 4, ) Integral 1) -
3 e D4, Fieta
Wa, be Koare algebraic oy, *‘ J (R, +) Abelian group (D, 4) Apgy ¥4,
A ab and l':lik . ﬂ: e ll1“:;ul,:.ﬂ‘:'1:ﬂ Wn (1) Is ansociative (10 .“M:‘"\:ﬂmp (¥, ) Aetian group
ment | ]
:;rl;m - -ul:neI:u‘f.q‘;hhl' ™ aw distributive law distributive luw filjony :I:-:;:u‘u“
6 Wa b e Kare algebraic over iy ‘t‘ fullows v aw Lol
n, respectively, ihen o 4 ), ey, ) () b commutatiye (
b # Dyare algebraic over | oy 'Iil';:hw| "w Unity belongs iy [y 1 ——
i L] of Ity buebeongs, g P
2, 161 bs an algebraic extension of P e Muidple inverse of sos-
an extension of |, gy glemen! st element exisis and
algebraic extension of | ten g h f’ bk 1o
A L] o May or miy Dol possest dues not pasyesy
nmd Polynomialy divivo™ oper zero divivr wer divisor Proper does not possess proper
" ser0 divis,
Rool of ple)=—=11 pic e Fla) iy o
a in some e:l:}mlm field of Fis cajey :Jm.“ 'd(}rwpl
g 1 m oup  Semi
I!—'l‘l']u' element ae K |, 'y e Qu I;r 4 II"'HID Manaid Group  Abelian Growp
)& Flx) is of multiplicity m if ( o i v |
atens (3 - ™)} o). T {“",f v i ; j
ngg Mebds—11 fix) e Fla) ay ﬂ“ 3
sion I of Fis said to be Il‘«|1|i|li||gll:h;?:\,l:w ’m'.a:nill)' ! | |
) il over E (e in ELx]), but not over sy of inverse - | q
sub-field of E, fio) can be factored u r'fud'? w y
Jinear factors. o

Some Important Theorems
I. Remainder theorem—I1 i)« Vi) andify

is an extension of F then for any clemen pg
K, plx) = (x = b)glx) + pib). where gixjg
Klx] and deg qi(x) = deg pix) - |

If a e Kis aroot of pix) e Flx|, where Fe
K, then in K[x] (x — ap | pix),

. A polynomial of degree n over a ficld B an
have almost i TOOLS inany extension.
If pix) is a polynomial in Fla] of degree nz]
and is irreducible over I, then there i
extension E of F. such that [E: Fl = nin
which pix) has a root,
If fix) & Flx], then there is @ finite exension
E of F in which fix) has a root. Moreows
[E : F] < deg fix).
. Let fix) € Flx] be of degree n 2 1. Then there
is. an extension E of F of degree al most ma
which fix) has a root.

ol

wa

=

w

o
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a\o tion is—

PART-B

order

matrices of same

! it respt o malrix addition, i 3—
(A) Quasigroup  (B) Semi-group

" 2.
The set of square matric_cs o!dcr 2, with re
pect to matrix multiplication 18 .a-—-
(A) Quasi-group  (R)/Semi-group
(C) Monoid (D) Group

ices of
3. The set of unw% 4
same order with respect to matrix multip

(A) Quasi-group  (B) Monoid
&) Group (D) Abelian group
4. If order of group G is p?, where p is prime
then—
“(A) G is Abelian
(B) G is not Abelian
(C) Gisring
(D) None of these
5. If G is a group, fora € G, N(a) is the nor-
malizer of a, then V x € N(a)—
fA) xa=ax (B) xa=e
(C) ar=e (D) xa # ax
6. If G is a group, then for all a,be G—
(A) @) =a' b' Bylab)! = 1 g
(C) (ab)™ = gp (D) (ab)™! = pg
7. lfQ IS a set of integers and g.b = a - b, then
G is— n i Y
L\ .
A) Quasi-group (B) Semi-group
(C) MOHOid {D) Group
8.
3;1 ' @ group G, for each elemen; 4 ¢ G, there
(A) No inverse
“B) A unique inverse -1 G
(C) More than one inverse
(D) None of these

A
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If a, b € G, agroup then b is ool
¥ exist ¢ € T
qﬁ)b:r'ac (B) a=¢p
(C) b= ac”! (D) b= e \
B prime. number and P o,
ae G— '
©) @ cG Oy ram
. If G is a group of order n ghey
11 identity element is— %'

“(A) One (B) Greater th,
(C) n (D) None of thege

12. Ifa € Gisof order n and p is prime
the order of a@” is— 0(a)=,, iy
WA) n (B) One 2"-¢
(C) Less than n (D) Greateflhann

13. If the orders of elementsg, aleq are may
n respectively then— [ 2)+ D)
VA) m=n (B) m#n
(€) m=n=0 (D) None of these

14. Ifina group G, a € G, the order of q ispay
order of a” is m then—

“(A') m<n (B)y m>n
(C) m=0 (D) None of these
I5. The identity permutation 15—
wA) Even permutation
(B) Odd permutation
(C) Neither even nor odd
(D) None of these

16. The product of even permutation is—
AA) Even permutation
(B) Odd permutation
(C) Neither evep nor odd
(D) None of these

17. The inverse of an even permutation is—

(A) Odd Pérmutation
“B) Even Permutation

-j
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© Even or odd mmuution

Mathematics | 269U
(D) None of these - g:: :rc[h!. =l <i)is multiplicative group,
& TepORCtOf (1248 (3 g0 ey - .
A gi)l) B) (15 (©) Three \;gj ;wo
19. The inverse of an odd Permutation js__ (A) 10D ks) the onder (b
(A) 0dd permutation ‘ : © Fo:r B)Two | ) . et
(B) Even permutation | D) Five £
(C) Even or odd 2. ilflg 'é?sgmup of even order, V a # ¢ if al=¢
None of these »
{l?:r B e - A) Abelian Soup  (B) Sub-group
2. e lqveme of ? ement (€) Normay 8roup (D) None of these
s \ &}t\ : cq}/ 30. Every group of prime order js—
: -y 15 .\\‘\@” A) Cyclic (B) Abelian
(C) b= o, for same o ) SU-L0 D) Normal group
(D) None of these 31 If H, and H, are two right coset sets of sub-
. goupHthen— eflar it oink o 44y |
21. Let Zbe a set of integers, then under ordin A) H nH, = = ; R 5
. 4 i ary 1 2 ¢ or H] = Hz
mu]npllcatlon (Z, ) lS—-_ Twvese low {-(\Ill A (B) H] NH, = ¢
Vﬁk} Monoid (B) Semi-group (©) H, qu =6
;_(C) lel—grvup (D) Group (D) Hy #H, andH, n H, # ¢
22 If N is a set of natural numbers then under 32. The number of ] : 4
binary operation a-b = a - b, (N, -) is_ A et UMY
(A)-Quasi-group (B) Semi-group (B) Order zf riu i
(C) Monoid (D) Group poup

(C) Inverse of group

(D) None of these

23. If G is a finite group and order of group is m
then Vae G— :

gt 33. A one-one mapping of a finite grou onto
(A) a" = ¢, an identity itself is— k! £.Gn
(B) am#e (A) Isomorphism  (B) Homomorphism 16
€) a"=a (C) Automorphism (D) None of these y
(D) am=a—l g g g “'I,C.’ f
34. IfinagroupG,Vae G— ;

24. HK is a sub-group of G iff—
MA) HK = KH (B) HK c KH
(C) HK o KH (D) HK # KH

(A) (@'y'=a (B) (@) =g
(C) (alyl=qa? (D) None of these
35. If f=(23) and g = (4 5) be two permutation

5. fGisa group and a € G such that a? = a, on five symbols 1, 2, 3, 4, 5 then gfis—
then a is equal to— 1234 (12356) v 537
(B)
JA) Identity element @A) \1354 14654 L5
(B) Inverse 12357) rﬁ (]234
C )
(C) Zero element © 14641 13254

(D) None of these 36. Given permutation XEL, 59 is equiva-

2 1254
26. The generators of a group G = {a, a2, @* a, O 6 iy
@, a® = e} are— ol - >
2anda* .- (A) (1632)(21) (B)(1632)
«(12};::&:55 ((3: ZZZEd@ () (1632)(45) (D) (1632)(54)
a a =)
.
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37. If given permutations are A = (; ‘2; : ; 4

(1234
e ”4SDﬁudBA~—

(12345
) (37543

12345 12345)
© (1254L) D) (12345
n and

38. If number of left cosets of Hin G are
the number of right cosets of H in G are /M

then—
~A) m=n (Bymzn
(C) msn (D) None of these
39. If H is a subgroup of finite group G and order
ly m and n then—

.~of Hand G are respective

/:_"'-.-ﬁjlf: {A} MIH {B] n Im
S\ (C) m fn (D) None of these

40. If Gis a
every a € G, we

AA) a"=e¢ an identity element
(B) a"=a’
(C) a"=a
(D) None of these
If H; and H, are (WO subgroups of G then

finite group of order 7, then for
have—

41.
following is also a subgroup of G—
fA) H] F\H; (B) H[ UHZ
(C) H, H; (D) None of these
42. The set M of square matrices (of same order),
with respect to matrix multiplication is—
? Group (B) Semi-group
) Monoid (D) Quasi-group
43. If (G, #)isagroupand Va, be G
of b'#a'#b+a=e, thenGis—

3 , i (4Y/ Abelian group  (B) Non-Abelian
o* N (C) Ring (D) Field

- ¢ 44. If Gisagroup such that @’ = ¢,V a € G, then

o »* Gi—
o (A) Abelian group N7V
W (B) Non-Abelian group Tk L
et (C) Ring ' Y
" (D) Field
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2 igf B N
'Kguxz

on
1234
\;R)u() (:325

2153!
(B)(|642 ;\‘(q

(23 and g = (4 5) are 1
45. "f,'g, 3.4, 5 then fg is— .

B ('23 !
( }(I22:a?

1234 12 W
s (D)( 34,
1)(C) (1245 12349

CIfnis the ordcr_of element a of
- am" = e an identity element iff-...grwpﬁ~

Qﬁ)mlﬂ )n Im
() mx”n D) n fm

47. The order of identity element i
is— 1 m’ﬂ
¢A) One
(B) Zero
(C) Order of group
(D) Less than order of group

If a, a' e G, agroup and order of 4 and g

48.
are m and 7 respectively then—
(A) m>n (B) m<n
\(é]' m="n (D) None of these

49. If a, b€ G, a group of order m then ordey
ab and ba are—

vé\} Same
(C) Unequal

(B) Equaltom
(D) None of these

50. If G ={1,- 1} is a group, then order of |
is—
AA) One (B) Two
(C) Zero (D) None of these

51. The product of permutations (123)-243
(13 4)is equal to—
(1234
(B) (5621)

A1
1251 1253)
© (1651 (D) (1234
4\ .
52. The permutation :].’i? gz)lSﬂ]ualw'-
(A 1501324 B HAC
(C) (135)(56) (D) (14263

. 12
53. Gllyen the permutation ¢ = (1 234567’
cdis—
(A) (135724) 951(147362”'

) (1765432 O]
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Satement A : All cyclic groups are abelian
& gtatement B : The order of cyclic group is
as the order of its generator.

O

(A) Aand B are false

(B) Ais true, B is false

(C) Bistrue, A is false

(DY A and B are true
56, Statement A : Every isomorphic image of a
" gyclic group is cyclic

statement B : Every homomorphic image of a

cyclic group is cyclic.

(AyBoth A and B are true

(B) Both A and B are false

(C) Ais true only

(D) B is true only

57. A element @’ of a finite cyclic group G of
order n is a generator of G iff 0 < p < n and

also—
(A)" is prime to n Jows =\
(B) p is the multiple of n
(C) n is the multiple of n
(D) None of these
58. If G is a finite group of order n, a € G and
order of a is m, if G is cyclic then—
(A) m=n (B) m>n
(C) m<n (D) None of these
59. If a € G is a generator of a cyclic group and
order of a is n < e then order of a cyclic
group m is—
(A) Infinity (B) m=n
(C) m>n (D) m<n
60. If e, and e, are two identity elements of a
group G then—
(A) ey=e;
(B) e #F e,
(C) e, = ce,, for some ¢
(D) None of these

61. The idempotent element in a group are—
(A) Inverse elements of a group x
(B) Identity element of a group_-
(C) Any element of a group
(D) None of these
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62,

65.

66.

67.

68.

69.

70.

71.

Let G = (1, 1) then under ordinary multi-
plication (G, ) jg— e
(A) Monoid

(€) Quasi-group

) Semi-group
) Group

- Let Q be a set of rational numbers then under

ordinary addition (Q, +) is—

(A) Monoid (B) Semi-group

(C) Quasi-group (D} Group

Let G be a group of square matrices of same
order with respect to matrix multiplication
then it is not a—

(A) Quasigroup  (B)/Abelian group

(C) Semi-group (D) None of these

If G is a finite group, then for every a €G,

the order of a is—
“(A) Finite (B) Infinite
(C) Zero (D) None of these
In the additive group of integers, the order of
every element a # 0 is—
(A)“Infinity (B) One
(C) Zero (D) None of these
In the additive group of integers, the order of
identity element is—
(A) Zero (B) One
(C) Infinity (D) None of these
In the additive group G of integers, the order
of inverse elementa™!, Vae G is—
(A) Zero (B) One
(C) infinity (D) None of these
The singleton {0} with binary operations
addition and multiplication is ring and it is
called—
(A) Zero ring (B) Division ring
(C) Singletonring (D) None of these
'_The e_Jcmenl a#0 e R, the commutative ring
1s an integral domain if— ik o 2000 ¢
(A) ab=0,be Randb=0 o ba0n B
AB) ab=0.be Randb#0 A0 e
(C) ab#0,be Rand b=0
(D) ab=0,be Randb=0
A ring R is an integral domain if—

(A) R is commutative ring
(B) R is commutative ring with zero divisor

23 /23


https://play.google.com/store/apps/details?id=mobile.scanner.pdf

